Research Intern, 2020

Minimum qualifications:

  • Currently enrolled in a Master’s or PhD degree in Computer Science or a related technical field.
  • Experience (classroom/work) in Natural Language Understanding, Neural Networks, Computer Vision, Machine Learning, Deep Learning, Algorithmic Foundations of Optimization, Data Science, Data Mining and/or Machine Intelligence/Artificial Intelligence.
  • Experience with one or more general purpose programming languages: Java, C++ or Python.
  • Experience with research communities and/or efforts, including having published papers (being listed as author) at conferences (e.g. NIPS, ICML, ACL, CVPR, etc).

Preferred qualifications:

  • Available to work full-time for a minimum of 13 weeks.
  • Returning to your degree after completing the internship.
  • Relevant work experience, including internships, full time industry experience or as a researcher in a lab.
  • Ability to design and execute on research agendas.

About the job

Research Scientists at Google work closely with Software Engineers to discover, invent, and build at the largest scale. Ideas may come from internal projects as well as from collaborations with researchers at partner universities and technical institutes all over the world. From creating experiments and prototyping implementations to designing new learning algorithms, Research Scientists work on challenges in machine perception, data mining, machine learning, and natural language understanding. As a Google Research Scientist, you will continue to be an active contributor to the wider research community by collaborating with academic researchers and by publishing papers.

Researchers on the Google AI team have the freedom to set their research agenda and to engage as much or as little as they wish with existing products, choosing between doing more basic, methodological research or more applied research as necessary to produce the most compelling results. Because many of the advances we develop today may take years to become useful, the team as a whole maintains a portfolio of projects across this spectrum. It is our philosophy that making substantive progress on hard applications can help drive and sharpen the research questions we study, and in turn scientific breakthroughs can spawn entirely new applications.

The Google AI team’s research focuses on methods that can learn multiple layers of rich, non-linear feature extractors and can scale to large amounts of data. Much of our work is best understood as part of the deep learning subfield of machine learning, but we are interested in any methods capable of efficient and effective feature learning that get good results on challenging problems. We have resources and access to projects impossible to find elsewhere. Our broad and fundamental research goals allow us to collaborate closely with and–contribute uniquely to–many different product teams across the company.

We do research differently here at Google. Our team of Research Scientists aren’t cloistered in a secret lab but are embedded throughout the engineering organization, allowing them to setup large-scale tests and deploy promising ideas quickly and broadly. Ideas may come from internal projects as well as from collaborations with research programs at partner universities and technical institutes all over the world. From creating experiments and prototyping implementations to designing new architectures, Research Scientists work on real-world problems including artificial intelligence, data mining, natural language processing, hardware and software performance analysis, improving compilers for mobile platforms, as well as core search and much more. But you stay connected to your research roots as an active contributor to the wider research community by partnering with universities and publishing papers.

Responsibilities

  • Participate in cutting edge research in machine intelligence and machine learning applications.
  • Develop solutions for real world, large scale problems.

location